Manufacturing Process

Manufacturing Process

Within 13 steps we will make our customers discover the entire productive process.

Step 1

Using a specially designed hatchet, the harvester slices through the cork layer on the trunk of the tree during the summer months, taking care not to cut deep enough to damage the living portion of the trunk. Horizontal cuts are made at the base of the trunk and just below the lowest branches. A few vertical cuts separate the circumferential cork ring into sections of an appropriate size. Using the wedge-shaped handle of the hatchet, the harvester strips each panel of cork from the tree. On some large trees, cork is also stripped from the lower branches.

Step 2

The cork planks are stacked outdoors and left to cure for a time ranging from a few weeks to six months. The fresh air, sun, and rain encourage chemical changes that improve the quality of the cork. By the end of the curing process, the planks have flattened out and lost about 20% of their original moisture content.

Step 3

The planks are then treated with heat and water to remove dirt and water-soluble components like tannin, and to make the cork softer and more flexible. This process typically involves lowering stacks of cork planks into large copper vats filled with boiling water containing a fungicide. Heavy weights are placed on top of the cork to keep it submerged for 30-75 minutes.

Step 4

When the planks are removed from the vat they are heaped and stabilized to straighten for 2-3 weeks. a hoe-shaped knife is used to scrape off the poor-quality outer layer of cork, which amounts to about 2% of the volume of the plank but 20% of its weight. The planks are stacked in a dark cellar and allowed to dry and cure under controlled humidity for a few more weeks.

Step 5

The cork planks are trimmed to a uniform, rectangular shape and are sorted by quality. The finest quality material will be used to make natural cork products like wine bottle stoppers. Poorer quality material will be ground and used to make composition or agglomerated cork.


Step 6

Cork slabs of the desired thickness are placed in a steam chamber for 20 minutes to soften them. The slabs are then cut into strips whose width corresponds to the intended length of the bottle stoppers. The strips are fed through a machine that punches hollow metal tubes through them, removing cylinders of cork.

Step 7

Although some beverage bottlers want cylindrical corks, others want tapered ones. To achieve this shape, the cylinders are arranged on a slanted conveyor that carries them past a rapidly rotating circular knife. As they pass the blade, the corks are also revolving on the conveyor, so they are trimmed to a taper.

Step 8

Both cylindrical and tapered corks are washed, bleached, and sterilized in large vats. Rotating wooden paddles continually push the corks down into first a washing solution and then a neutralizing solution.

Step 9

After being dried in a large centrifugal dryer, the corks may be marked with an identifying label (with ink or a hot-metal stamp). Some are also coated with a sealant such as paraffin or silicone. Then, they are packed in airtight bags in quantities of 1,000 or 1,500; the air is removed from the bags and replaced with sulfur dioxide (SO2) to keep the corks sterile.


Step 10

Waste cork is passed through a machine that breaks it into small pieces. The pieces are washed and dried, and then sent through two successive grinders to further reduce the particle size. After another washing and drying process, the particles are screened for uniform size.

Step 11

Pure agglomerated cork is formed by packing cork particles into a mold and covering it securely. Superheated steam (600° F or 315° C) is passed through the mold. Alternatively, the mold is baked at 500° F (260° C) for four to six hours. Either process binds the cork particles into a solid block by activating their natural resins.

Step 12

Compound agglomerated, or composition, cork is made by uniformly coating the cork granules with a thin layer of an additional adhesive agent. The coated granules are pressed into a mold and slowly heated (the temperature varies, depending on the adhesive used). When removed from the mold and cooled, the blocks are stacked to allow air circulation and are allowed to season.

Step 13

The agglomerated cork is cut for its intended use. For example, sheets may be cut from rectangular blocks. Or if a tubular mold was used, the resulting cork rod may be sliced into discs. A large, cylindrical block might by revolved against a knife blade to shave it into a long, continuous sheet that is rewound into a roll.


Cork waste generated during the manufacturing process is ground and used to make agglomerated cork products. Cork powder that is generated by the grinding process is collected and burned to help fuel the factory. Chemical components removed from cork during its processing can be recovered as useful byproducts and include tannin (used for curing leather), hard wax (used in products like paraffin, paint, and soap), resinous gum (helps vanish adhere to copper and aluminum), and phonic acid (used to make plastics and musk-scented toiletries).